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THE RECONSTRUCTION PROBLEM

REVISITED

Ambady Suresh

Dynacs Engineering, In('.,

Cleveland, Ohio 44135, USA.

Abstract

Tile role of reconstruction in avoiding oscillations in upwind sc|_emes is reexamined,

with the aim of providing simple, concise proofs. In one dimension, it is shown that if the

reconstruction is any arbitrary function bounded by neighboring ('ell averages and increasing

within a ('ell for increasing data, the resulting scheme is monotonicity preserving, even though

the reconstructed function may havo overshoots and undershoots a.t the cell edges and is in

general not. a monotone fimction, in the special case of linear reconstruction, it is shown

that merely bounding the reconstruction between neighboring cell averages is sutficient to

obtain a monotonicity preserving scheme.

In two dimensions, it. is shown that some ID TVI) limiters applied in each direction

result in schemes that are no! positivity preserving, i.e. do not give positive updates when

the data are positive. A simple proof is given to show that if the reconstruction inside the cell

is bounded by the neighboring cell averages (including corner neighbors), t.hell the scheme

is positivity preserving. A new limiter that enforces this condition but is not a.s dissipative

as the Minmod limiter is also presented.

Introduction

In this paper, we begin by reexamining l.[le reconstruction step in upwind schemes 1-'_

with the aim of deriving slightly more general results and providing simple, concise proofs.
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To introduce the one dimensionalproblem, considerthe model equation

_ + "x = O, (1)

where I is tinle, x is distance, and u(a', O) = Uo(X) is the initial condition. \_[e denote by u) _

the cell averages of u(.r, t") on a uniform grid of width Am and cell center xj = jAx,

1
f_.,+Ax/'e u( x. t'*) dx. (2)

ttj -- ,.-._;1: x.s--Aa-/2

Lel HS'(_), _ = (,r-x.i)/AD denote the reconstruction of u(x,*") in the cell j expressed

in local coordinates. The new cell averages are obtained by' convecting tile reconstructed

protiles a linie step and averagillg the resulting profiles over a cell. The result is

l/n+l = [ 1/2 [e'.' ,(e)de -Jr- ll_7(_)d_ (3)i/2-,\
.I dil2-h J- d-l12 "

where A = AI/D.. For clarity, we omit the superscript 7_ when there is no collfusion, i.e U)

denotes u".
J

For increasing data, i.e. &j _> uS_l for all j, we are interested in schenles for which

the new ('ell averages are also increasing. Such schemes are called monotonicity-preserving

scilemes. Tile 3, mimic the exact sohltion and as a special case it follows that a step function

propagates without spurious oscillations.

The question we are interested in is:

ll'Dal at: ._u.fiJicield co rMiliol_s on th< rcconstructiol_ RO(() that u,ill emsure that the: acheme

(3) is mol_olollicily-preservin 9 ?

This question has been studied extensively over the last two decades in the upwind liter-

ature, and we review existing conditions below. Our aim is to provide a new, simple, concise

proof thai covers the general case. Generality is achieved here by considering a) completely

arl)ilrarv funclions for reconstruction and b) bv considering Monotonicity-Preserving (MP)

schenies as opposed to Total Variation Dilninishing (TVD) schemes. TVD schemes are

inonotonicii.y-preserving, but not vice-versa, hi addition, NIP schenies can be designed to

avoid lhe chronic loss of accuracy at sniooih ext.relna incurred t)3, T\.;D schemes (see Ilef. 7

for all exanll)le ).

Existing Conditions

There are two different conditions stated in the literature. The first condition, introduced

I)v Vail Leer I ill his seminal l)aper on Ul)wind scheines and oft, ell called Van Leel"S condition,
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Figure 1" An oscillation created by reconstructions bounded by neighboring cell averages.

/\ = 0.25.

states that the reconstruction R i(_ ) must be bounded by the neighboring cell averages, i.e.

for increasing data, the condition is

iij_l _ [_j(_) _ t/,j+l (4)

While this condition suffices for linear reconstructions, we will show by an explicit, coun-

terexamI)le that this is not sufficient for general reconstructions. Indeed, let. 0j-3 = -6,

tlj-2 = -3, 0j-1 = 0, u¢ = 1, uj+l = 4, and the reconstructions l)e Rj-2(_) = -3 + 6_;

Rj__({) = (4 - 24( - 48(a)/7; R.i(_ ) = 1 - (4 - 24( - 48{_)/7; R,+I(() = 4. These re-

constructions are plotted in Fig. 1. Note that the data is increasing and (4) is satisfied in

each ('ell. However, the cell averages at the next time step given t)3' (:3) for _ = 1/4 are

t?_+_ = 27/11'),, '_i}_+1 = - 3/28, and _.i"+_+1= 103/28. So monotonicit¥, is not preserved.

Another condition (Harten et. a.12, LeVeque 3) is stated in terms of the total variation of

the reconstruction. Let. TV(f(x)) denote the total variation of f(x given by

TV(f) = I.f'(,r)[dx (5)

and TV(fi) denote tl)c discrete total variation of the ('ell averages g_ven by

Then the required condition on the reconstruction is that

Ti'(t¢(.)) <_ TV(o). (7)

NASA/TM-- 1999-209082 ;1



This condition holdsfor anygeneralreconstruction. Forincreasingdata, (7) impliesthat R(.)

is all increasing function with no overshoots at the ('ell faces. However, designing schemes

that satisfy" this condition is a bit more difficult because the conditions on H.i(() now involve

/{j-t(() and R.i+I(() in addition t.o the cell averages. This condition is also unnecessarily

restrictive since most of the well known TVD schemes do not satist_v i|.

For examl)le, consider the data. given by t_j_l = 0, ii 5 = 0.2, uj+x = 0.8, and u)+2 = 2.6.

The reconstructions obtained by the popular Superbee limiter and Van Leer's Average limiter

((45) and (46) in the appendix) are identical and given by Rj(() = 0.2+0.4_ and Rj+I(() =

0.8 + 1.2(. which has an overshoot at the face Xj+l/2. Thus both these schemes violate (7)

although both limiters are inoi|otonicity preserving. This example clearly illustrates thal.

condition (7) is unnecessarily restrictive for monotonicity preservation.

Thus, of the two conditions available in the literature, neither are completely sa.tisfa.ctory.

Van Leer's condition fails for general reconstructions while the second condition (7) is so

restrictive that many well known schemes do not satisfy it. In the next section, we introduce

a slight modification of Van Leer's condition that is more general than (7) and for which

inonotonicity preservation can be proved for general Rj(().

A Modified Condition

First, we need two inequalities that hold for increasing functions. A function f(x) is an

ilwre_lsing J:ttl_ctiolt if for any xl > x2, f(xl) _> f(x2). I,et f(x) be an increasing function in

[-1/2, 1/2] and let. its mean over this interval be denoted by .]'. Then, for 0 _< A _< 1, we

have the following two inequalities that are useful.

l/1/2 1 /1/2--,\
-A .,x/'e-.\ "f(4) d_ >_ .f, l -/_ 3-1/2 f(4) d4 <_ .f. (8)

The first inequality states that saint)ling an increasing function from the right yields an

average greater than the cell average. To prove this inequality, note thai if we denote by

g(A) the left hand side of the first inequality, we get. Ag'(A) = .f(1/2 - A) - g(A). As this is

nont)ositive for all ),, the inequality follows. The proof of the second inequality is similar.

The modified condition can be stated as follows:

Theorem- 1: As,_um _ we ha_,e increasir_g dat_ arid lh _ recollstrucliom_ Rj(_) satisfy th _ thre

condition, s 9i_,(l, belou, for all j:

Rj(<) =

i,.i-1 _<Rj(4) _< (10)

R.i(_) is <l_ b_cre<l.sin 9 .f_l'_c!io_ (11)
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Then, for 0 < A < 1, the cell averages al tDe I_(;r! time step ar( also increasi, g and (3)

becomes a mo notor_icity preservil_g scheme.

Proof:

Since Rj-I(£) is an increasing function, lhe firs! integral in (3) satisfies

i fit'2
J1/2-.\ /_5-1(_) d( > tZj_l 12)

and from (10) the second integral satisfies

f_12-\ t¢,(4)d_ > (l - A)_i__ 13)
1/2 "

Thus u '!+l > uj-l. Similarly, [roln the 1)ounds O11 Rj_2(_) , We haw"

f ll'e

/z-,x R/-2(() d_ <_ ,\tTj-i 14)

and since Rj-I({) is an increasing function,

1 fl12-,\
I - /_ .t-1/_ Rj-I(_) d_ < 'uj-1. 15)

=_+1
SO itj_ 1 _< IIs_ 1.. Hence, u'_+_,_>_ @'+11 completing the proof. []

Thus, if we add to Van Leer's condition the requiremenl that lhe reconstruction be

increasing when the data are increasing, we can prove monotonicitv preservation for any

general reconstruction. Note that conditions (9), (10) and (11) are more general than (7)

since TI'(/7(.)) can be greater than TI:(/_). In addition, all the well known second order

TVD schemes satisfy (9), (10) and ( 11 ) so that Theorem - 1 is nol unusually restrictive.

Although adding the requirement that the reconstruction be a monotone function is a

fairly trivial modification, we have not seen Theorem - 1 stated and proved anywhere in the

literature. Indeed, this is all the iilol'e surprising since the fairly restrictive condition (7) is

widely quoted. Monotonicity of the reconstruction was imposed as a condition by (1olella

and \'Voodward s in the design of their piecewise parabolic melhod (PPM), but monotonicity

preservation is not proved there.

TVD Schemes

TVI) schen-ies }lave sonic theoretical advantages over nionotonicily preserving schemes

such a.s a guaranteed collvergence to a. weak sohil.ion of the underlying conservation law

2 ]_lonoi.oniciiy-preserving scliemes differ from TVD schemes only in their treatmeni of
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local extrema. It. is not surprising, therefore, that with somerecipefor reconstructionat an

extrema, a result similar to Ttmox'em- 1 can I)e provedfor TVD schemes.

Theorem-2: Let the reconstruelio,_s Rj(_) ._ati.._fy the condilion_ gi_,_n below for all j:

= (16)

WhC'/I ttj_ 1 __ ttj __ 1t j+ 1 "

tt,i-I "_ Rj(_) (ttj+l (tied Rj(() i.__ (tit increasing .function; (17)

w h e:I_ ii)_ 1 >_ uj > t-tj + _ •

i_j-1 >_ Rj(_) >_ uj+_ and Rj(_) i.s a decrea_sing .function; (18)

otherwiae •

tcj( ) = .j.

The., for 0 < A <_ 1, (3) becomes a TI:D scheme.

Proof: We introduce some terminology on data types. Let us say the data is increasing at

j when ",-i _< ".i -< Uj+l and decreasing at j when u)-i _> uj _> uj+t. From Theorem-1 it

follows thai for data increasing at j and j - 1. or de.creasing at j and j - 1 the new cell

averages lie inside the range defined by neighboring old cell averages, i.e.

Mint/_i,/ti-l) < it':+1 < Max(,_j, Uj_l) (20)

(!onsider the case where data is increasing a.t j but we have a local minimum at. j - 1, i.e.

uj-1 _< iij_2 and izi-1 _< ti.i. In this case using (19) and (3) we can show that the bound (20)

is still satisfied. Similarly, we can show that the bound (20) holds also for all other cases

such as data decreasing at j - 1 and a minimum at j, or increasing at j - 1 and a maxinmm

at. j el.(:. In short, (20) holds for all data.

Since (20) holds for all data, no new extrema can be created and the value of a local

maximum can only decrease and the value of a local minimum can only increase. Hence the

total variation can only decrease and the theorem is proved. []

The Linear Case

The linear case has been exhaustively studied 1-6 in the context of TVD flux limiters

and will not be repeated here. However, we wish to highlight the following peculiarity

of the linear case, namely that monotonicily is l)reserved even without requiring that the

reconstruction be increasing for increasing data, i.e. even without (11). In other words, Rn"

incwasing data, the slopes can be decreasing and monotonicity is still preserved so long a.s

NASA/TM-- 1999-209082 6



the linear reconstructions remain bounded by neighboring cell averages. For completeness,

a proof is sketched out below.

Assume increasing data and linear reconstructions I_'j(4) = u5 + "_J4 satisfying (10) for

all j. 'file case where u.i = uj__ is trivial. For uj _ uj_j, by a suitable normalizal.ion we can

take the data to be uj+l > 1, g(i = 1, b.i_l = 0 and ii)_2 _< 0. A direct calculation of (3)

gives

i}<[}+ 1 _, ,_+ 1-t'.i-a = 1 - k - k0.i_2 + A(1 - A)(2.,j_l -.si- .sj_2)/2 (21)

From (10), I.:Jl < '2, I. j- l <_ -20 _e. Wnde," these bounds, it can

be verified that the righl hand side of (21) is positive for 0 _< A < 1 and u.i_2 _< 0. Thus

monotonicity is preserved.

Note however that withou_ condition (11), uT]+l can lie outside of [f_.j__, it)]. So here we

have an itlstan('e of the scheme being monotonicity preserving without being bounded by

the initial data.

Reconstruction in Two Dimensions

For the two-dimensional advection equatioll

ut + au,-+ b._ = 0 (22)

with initial condilion u(x,9,0) = u0(x,y), a. set of conditions under which higher order

reconstructions preserve monotonicity is not known. The focus then shifts to schemes that

are positi'_61y-preservin 9 (PP) 9-14 where some theoretical results can be proved. These are

schemes that give positive updates when t.he initial data are positive, or equivalently, where

the cell averages at. time _ + 1 are bounded by the cell averages at time level u. In the

meteorology literature, such schemes are also referred to as positive definite.

In one dimension, the boundedness result used to prove Theorem-l, i.e. lhat

uj_] < it ''+l < tt,i
-- j --

(23)

suffices to prove monotonicity. In two dimensions this is no longer the case axld PP schemes

will not preserve monotonicity in geueral.

To introduce ihe reconstruction problem here, let us begin with a base scheme that uses

midpoint rule in time and linear reconstructions in each cell. This scheme is chosen since:

a) it. can be readily extended to the Euler equations, b) it requires only one l{iemann solver

calculation per face t)er timeste 1) and c) il has ah'eadv I)een implemented in commercial

codes l 5

NASA/TM-- 1999-209082 7



We assumea uniform grid of spacing Ax and Ay and a _> 0 and b _> O. A linear

reconstruction is assumed in each cell that carl be written in normalized coordinates as

with I(], Iql -< 1/2. The scheme ca,, be written as

where A_.

l imestep inside the cell and can be derived as

(24)

_l+l n __ Ax ( n+l/2 n+l/2 ,, n+1/2 n+l/2 ,_,2 = 'tti,J Ui+l/2,j --lli-1/2,j) -- AY(IAij+r/2 -- lli,j-1/2) (2'_))

= a_kt/A:r, Av = bAt/Ax arid the interface values are obtained by taking a half

n+l12 ----td _, + (1 -- £_),q'_ij/2 - Av,q'i_j/2tl i+ r 12,j _,3

n+1/2 A _qW /0
Ui,j+l/2 = "t-linj 2V (1 - u,_ i,jl- - A_S'_j/2

The linear scheme with ,_q'J',,jand ,.qi_.jgiven bv_ their central difference values such a.s

(26)

'_2ij -_- ('ll'i+l,J -- "Ui-l,J )/2 (27)

is second order accurate in time arid space and stable in the region ._a_> 0,/ku _> 0,/_+A._ _< 1.

Thus the time step can })e defined in terms of the CFL number by

= + b/.xy) (2S)

We can now state the reconstruction problem in two dimensions:

What arc su_'cient conditions on the r(:constraction Ri,j(_,71) that will ensure lhalthe

sch_m( (25) is posi/ivity preserving ?

For example, if we use any of the TVD limiters to calculate the x and y slopes, is the

resulting scheme positivity preserving ? The answer to this depends on the limiter as the

following example shows. Consider negative data given by

u-1,1 = -1, U0,1 _- 0

U--2,0 = --lO0 U--r,o = --l, i)O,o = O 01,0 = 0

U--l,--1 = --1 'U0,--1 = --10, 'hr,-1 = --100 (29)

/_0,-2 = -100

For A_. = 0.6. Au = 0.2, both the Superbee (46) and the Average limiter (45) (these

limiters are defined in the al)pendix below) give _.,_+1 = 16/50, which shows that. these"aO, 0

schemes do not preserve positivitv. The Minmod limiter, however, gives cn+l __ -57/50,'ttO, 0 --

which is acceptable. A closer look at the reconstructions in this example reveals that for the

Superl)ee and Average limiters, the reconstructions in each cell fall outside the range of the

NASA/TM-- 1999-209082 8



cell averagesof its neighbors.This condition turns out to besufficient to provepositivity as
shownbelow.

Let us defineNi.j to be the sot of cell averages of the immediate first order neighbors of

the cell (i,j) and uij.

[ I! i- 1 ,j+ 1

l_'ri,,I _ '[I i- 1 ,j

Ili-l,j-1

and ['ri, j t,O be the range of variation of on A"i,.i.

Ui,j+l _ H i+l,j+l,

Ill,j, lli+l,j,

H,i,j-1, _ti+l,j-I

(ao)

t,_.=,.,[Min[X_,._],M_x[X_,j]] (al)

Theorem-3: Assume that fo," the .,theme (25) th( veco,.4cuctio,t irl each cO1 i.," bou,ded by

its iremedial( i_eighbors, i.{. for all (i,j)

R,-,0 E lT,.j (32)

7'her_. for A_.+ Av < 1,

UI'j +1 _ _"i,j U tf[_|,j U [[[,.1--1 (:_3)

i.e. lhe cell ave:rage a/ lhe "next lim_Mep lie,_ inside the unio,_ of lhc averagc._ in th_ _eigh-

borhoods of (i,j), (i - 1,j) and (i,j - 1).

Proof: IJsing (25) and (26), we can write the scheme as

- ','-_" - 2)=.,,+l_,_,.i- (1 - _.- ._)(_,,j - .L, <i/9_ A_.,';_,,I.
• _,x 2) (3_)--}-)lr(//i_,,./-_- (1 -- )ix), i-10/'2 -- /_. f_'Ll,j/

-[-/_y(Ui,j_ 1 -- .,\a. ,q';':i)_l / 2 JI- (1 - Ay),giv,.i_,/2)

which can I)e written in tel'ills of the norma.lized reconstrnctions as

tU n+li,j-_- (1 - k_, - Au) Ri,.j(-k,,/9_ -A.v/2 )

-I-A_ R__,,;((1 - A:,,)/2,-Au/2) (35)

-}-_y iV_i,j_l (-- aa, / "2, (l -- ,\y ) / 2 )

lJnder the stability limit ,\_- + A_ <_ 1. the points where the reconstructions are sampled in

t.he above equation lie inside their respective cells. Thus the right hand side is a. convex

combination of sampled reconstruction values which are bounded I)y (32) and thus (33) is

immediate. []

It. is easily verified that Theorem-3 holds true for all propagation directions provided

the interface va.lues (26) are define(I from upwind ('ells. T'he general (:FI, limit is then

IA_.I+ IA_I_<i.

NASA/TM-- 1999-209082 9



Tile condition that the reconstructionbeboundedoverthe wholecell by all its immediate

neighbors (including corner neighbors) was introduced by Barth and .]esperson 16 in the

('onlexl of unstructured grids. Tile above result shows that this condition is useful for

constructing PP schemes in multi-dimensions for structured meshes as well.

We remark that the choice of stencil, i.e. (30) used above is somewhat arbitrary. In fact,

for the Mimnod scheme, the reconstruction is so tightly constrained that Ri,.i actually lies

inside 111("range of ui,j, and two linearly independent cells from ui+l,j, and uij+l. From this

it. follows that .,.,_+lui,)is bounded by., the four values Oi,j, Ili-l,j, '[ti,j_l, a.nd ?li_l,j_l, a nmch

smaller stencil than (3:/).

In the next section, we derive an efficient limiter that enforces (32) but is not as dissipative

a.s the Minmod limiter.

A PP Limiter

The procedure for modifying the slopes to satisfy (32) is far from unique. The approach

described here is similar to the approach of Barth and Jesperson 16, adapted to structured

grids and modified so as to depend continuously on the data.

To satisfy (32) within a cell, the idea. is to restrict the slopes so that the reconstructed

values at the four corners of the cell lie inside the required interval, i.e., (31). l)ne to the

symmetry of the grid, this is equivalent to restricting [_q_j] + ]_qYj] to lie inside another

interval. We skip the details and give the result in algorithm form.

Let the slopes be defined initially by their centered difference values, namely

q,r = (fti+l,j _ _ti_l,j)/2' i,j
S/Y,j = (_i,j+l -- ill,j--1 )/2 (36)

and let. l;,_i,_ and l.;,_, be defined by

-- _ _ "1
tli_l,j+ 1 --Ill,j, Iti,j+l -- lti,j, /_i+l,j+l --Ill,j,

1 ;,_i,_ = Min ui-_,j --Ill,j, --_, ?-ti+l,j -- "i,j, ] (37)
Iti-l,j-1 -- 'fii,j, (li,j-1 -- ill,j, //i+1,3-1 -- lli,j

ai-l,j+l --tti,j, lti,j+l- ai d , iii+l,j+l --iii,j, ]I'_zax = Max [-li-l,j -ill,j, _, lti+l,j -lti,j, ] (38)
lti-l,j-1 --Oi,j, (li,j-1 -- tti,j, (/i+l,j-1 --'_ti,j

where ( is a small positive number ((: = l0 -l° in all our numerical experiments). Then we

define

I: = "2 Min([I.;,_i,,I, I_;n_,xl)
q,_ (39)jl + I,%jl)

The final slopes are then

q'_. = Min(l I') q'÷'

,q'i_j = Min(1, l'),_q'_5 (40)

NASAfI'M-- 1999-209082 l 0



It can be verifiedthai, after limiting, the reconstructedvaluesin the cell (i,j) lie inside the

interval Ui,.i and that the reconstruction depends continuously on the data.

The main problem with this and other limiters is the loss of accuracy at extrema which

make these schemes only first, order accurate in the Max. norin. If a schenm is required to be

second order accurate everywhere (i.e. in the Max. norm), such a scheme will advect second

order polynomials exactly. It. follows that while advecting smooth extrema such a schelne

will give updates not bounded by the dala. it thus appears that second order accuracy in

the Max. norm and positivity preservation are mutually exclusive.

This is no! to say that some compromise might be found where positivity preservation

may be relaxed in some useful way near extrema. However, such a compromise has eluded

us thus fax'.

Numerical Experiments

\Ve present some numerical experiments on two dimensional advection to assess the per-

formance of PP schemes. We solve (22) on the domain [-1,1] X [-1,1]. Periodic boundary

conditions are imt)osed at. the boundaries. A number of initial conditions, advection direc-

tions and tiinesteps were explored bul only two cases are reporled here. After computation,

we scan the computed solution fox" overshoots and ulMershoots and l)resent line plots through

these regions. These represen! the worst case resulls.

Example 1: In this example, a uniform grid o[" 120 X 120 cells is used with convection

velocities a = 0.,8 and b = 0.1. The timestep was calculated by (28) with (?FL = 0.8 and lhe

final time is t = 20, which corresponds t,o 8 periods in :r and one period in .q. The initial

condition is
u(x,y,0) = ] fox' (:l: 2 -I- ,q2)1/2 < 0.4

= 0 otherwise (,11)

In Figure '2, the results along the line y = -0.264 (j=45) are shown. The solid line is lhe

exact solution. As can be seen both the Superbee and the Average limiter give significant

overshoots while the Minmod and PP limitei:s have no overshoots or undershoots. Tile PP

limiter is not as dissipative as the Minmod limiter but shock resolulion is still quite poor.

In terms of etficiency, the PP limiter is in lhe same ball pa.rk a.s any of tile TVI) schemes.

Example-2: The initial condition here is

u(x,y,0) = ext) (-/4(x 2 + y2)) (.12)

with ;4 = 200. T'he convection velocilies are a = 1 and b = 1. The same grid and CFL

numl)er are usod as in [_xample-1, bnt the final time is ! = 9 which corresponds to ono

period ill both x and y directions. The resulls along the line .q = 0 are shown ill t:igure 3,

NASA/TM--1999-209082 1l



where the lossof accuracy a,textrema,is clearly visible. The new PP linfiter gives results

similar to tile Averagelinfit,er. The results from the Minmod limiter are much poorer and
are llot shown.

We remark that a large number of numerical experiments with various initial conditions

seems to suggest that all the TVD limiters are positivity preserving when the advection

direction is 45 degrees.

Conclusions

In this paper', we have considered anew what. conditions a reconstruction must satisfy" for an

ut)wind scheme to have desirable nonoscillatory properties. In one dimension, a simple con-

cise proof is presented that if any general reconstruction is increasing for increasing data. and

bounded by neighboring cell averages, the resulting scheme is monotonicity-l)reserving. In

the special case of linear reconstruction it. is shown that merely bounding the reconstructi(m

I)etween neighboring cell averages is sufficient for monotonicity preservation.

In two dimensions it is shown that if the reconstruction over the whole cell is bounded

by the averages of all its first order neighbors, then the scheme is positivity preserving. An

efficient limiter that achieves this is also presented.

We hope that these concise proofs will be useful in the teaching of upwind methods and

also lead to the design of new schemes.

Appendix

For completeness, we summarize several popular one dimensional TVD limiters here. The

reconstruction in each ('ell is a.ssunmd to be R.i(( ) = uj + .sj _ and these limiters are various

recil)es to determine "Ei from the data.

differences given by'

8+

The Minmod limiter is given bv

Let s+ and .__ denote the forward and backward

= (iij+l -- uj) (43)
= (,,j - _,j-r )

1 [sgn(s+)+ sgn(s_)] Minting_ I I.%t)

The Average limiter of Van Leer' can be written as

1

sj = -j [sgn(.% ) + sgn(s_ )] Min((_+ + .__ )/2, '21-_-[, 21_+ l)

anti the Sul)erl)ee limiter of Roe can be written a.s

I [sgn(.s+) + sgn(.__)] Min(Max(ls+l, I.__l), 2l_-I, 21._+1)

(44)

(45)

(46)

NAS AfI'M-- 1999-209082 12



As mentioned above,the Minmod limiter is the most diffusive and the Superbeethe least

diffusive.
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